A simple rule for the electron-density error at special positions. By P.M.de Wolff, Laboratorium voor Technische Natuurkunde, Technische Hogeschool, Delft, The Netherlands

(Received 2 June 1965)

At special positions, the errors in the electron density can be several times those at general positions. This was shown by Cruickshank \& Rollett (1953), whose formula, however, does not readily yield an estimation of the factor by which the r.m.s. error $\sigma(\varrho)$ is increased. We shall show that, to an approximation sufficient for most purposes, this factor is g^{\star}, g being the order of the point group of the special position.

Consider the deviation $\Delta \varrho$ caused by deviations ΔF (complex in the acentric case) of the structure factors from their true values:

$$
\begin{align*}
V . \Delta \varrho & =\sum_{-h}^{+h+k+l} \sum_{-k}^{+l} \Delta F_{h k l} \exp \{2 \pi i(h x+k y+l z)\} \\
& =\sum_{\mathrm{allH}} \Delta F_{H} \exp 2 \pi i \mathbf{H} . \mathbf{r} \tag{1}
\end{align*}
$$

Now one may write:

$$
\begin{equation*}
V . \Delta \varrho=q_{1}+\ldots+q_{G}+q_{0}, \tag{2}
\end{equation*}
$$

q_{j} being defined by

$$
\begin{equation*}
q_{j}=\sum_{j} \Delta F_{H} \exp 2 \pi i \mathbf{H} \cdot \mathbf{r} \tag{3}
\end{equation*}
$$

where G is the order of the point group P of the crystal; Σ is a sum over \mathbf{H}-vectors only from non-degenerate forms, 1
and from each form only one, whereas Σ is obtained from Σ by transforming \mathbf{H} by the j th element $P j$ of P. The sum ${ }^{1}$ is over all reflexions in degenerate forms. Thus in orthorhombic centric space groups, Σ_{1} might contain all reflexions with all-positive indices; whereas Σ_{0} contains those with at least one index zero.

Now if S_{j} is a space group operation of which P_{j} is the translation-free component,

$$
\begin{equation*}
q_{j}(\mathbf{r})=q_{1}\left(\mathbf{r}_{j}\right) \tag{4}
\end{equation*}
$$

where $\mathbf{r}_{j}=S_{j}^{-1} \mathbf{r}$.
This follows from the phase relation between symmetryrelated F 's, which obtains for the ΔF 's as well:

$$
\Delta F_{H_{j}} \exp 2 \pi i \mathbf{H}_{j}, \mathbf{r}=\Delta F_{H} \exp 2 \pi i \mathbf{H} \cdot \mathbf{r}_{j},
$$

where $\mathbf{H}_{j}=P_{j} \cdot \mathbf{H}$.
On account of (4), (2) can be rewritten:

$$
\begin{equation*}
V . \Delta \varrho(\mathbf{r})=q_{0}(\mathbf{r})+\sum_{j=1}^{G} q_{1}\left(\mathbf{r}_{j}\right) . \tag{5}
\end{equation*}
$$

Since q_{0} is real and independent of the other q 's, upon squaring and averaging we obtain:

$$
\begin{equation*}
V^{2} \cdot \sigma^{2}\{\varrho(\mathbf{r})\}=\left\langle q_{0}^{2}(\mathbf{r})\right\rangle+\sum_{j=1}^{G} \sum_{k=1}^{G}\left\langle q_{1}\left(\mathbf{r}_{j}\right) q_{1}^{*}\left(\mathbf{r}_{k}\right)\right\rangle \tag{6}
\end{equation*}
$$

After substitution of (3) the products in the double sum can be written (note that $\left\langle\Delta F_{H} \Delta F_{H^{\prime}}^{*}\right\rangle=0$ for $\mathbf{H} \neq \mathbf{H}^{\prime}$):

$$
\begin{align*}
&\left\langle q_{1}\left(\mathbf{r}_{j}\right) q_{1}^{*}\left(\mathbf{r}_{k}\right)\right\rangle=\sum_{1} \sigma^{2}\left(F_{H}\right)\left\{\exp 2 \pi i \mathbf{H} .\left(\mathbf{r}_{j}-\mathbf{r}_{k}\right)\right\} \\
&=\varphi\left(\mathbf{r}_{j}-\mathbf{r}_{k}\right), \tag{7}
\end{align*}
$$

with the definitions

$$
\begin{gather*}
\left.\sigma^{2}\left(F_{H}\right)=\left.\langle | \Delta F_{H}\right|^{2}\right\rangle ; \\
\varphi(\mathbf{u})=\sum_{1} \sigma^{2}\left(F_{H}\right) \exp 2 \pi i \mathbf{H} . \mathbf{u} . \tag{8}
\end{gather*}
$$

Hence (6) becomes:

$$
\begin{equation*}
V^{2} \sigma^{2}\{\varrho(\mathbf{r})\}=\left\langle q_{0}^{2}(\mathbf{r})\right\rangle+\sum_{j=1}^{G} \sum_{k=1}^{G} \varphi\left(\mathbf{r}_{j}-\mathbf{r}_{k}\right) \tag{9}
\end{equation*}
$$

Now the real part of φ has a peak at the origin, the extent of which is determined by series termination broadening. Outside this peak, φ will be vanishingly small (see end of paper). Hence in (9), only the terms with $\mathbf{r}_{k}=\mathbf{r}_{j}$ need be considered; their number is $G g$ if the order of the point group of position \mathbf{r} is g.

Denoting the error for this position by σ_{g}, we find

$$
\begin{equation*}
V^{2} \sigma_{g}^{2}(\varrho)=\left\langle q_{0}^{2}\right\rangle+G g \underset{1}{\Sigma \sigma^{2}\left(F_{H}\right) .} \tag{10}
\end{equation*}
$$

The first term can be treated by a subdivision of q_{0} in mutually dependent sums similar to (2). For a general position ($g=1$), the result is $\left\langle q_{0}^{2}\right\rangle=\sum_{0} \sigma^{2}\left(F_{H}\right)$ and (10) reduces to the well-known formula (Cruickshank, 1949)

$$
V^{2} \sigma_{1}^{2}(\varrho)=\underset{\text { all } H}{ } \sigma^{2}\left(F_{H}\right) .
$$

For a special position $(g>1)$, it follows from (10) that

$$
\begin{equation*}
\sigma_{g}^{2}(\varrho)=g \sigma_{1}^{2}(\varrho) \tag{11}
\end{equation*}
$$

provided $\left\langle q_{0}^{2}\right\rangle$ is affected by the special position in the same way as the second term. Special values of $\left\langle q_{0}^{2}\right\rangle$ can be calculated by Cruickshank \& Rollett's more explicit method. Alternatively, they can be computed by applying the present method to projections. For instance, the contribution of a zone ($h k 0$) will be enhanced in a special position A according to the plane point group of A in the c projection; this group may have an order different from g.

However, the number of reflexions involved in q_{0} is in general relatively small, so (11) will often be a sufficiently accurate estimate for the enhancement. This is illustrated by Table 1 giving the errors σ_{CR} calculated from unpublished estimates ΔF by Cruickshank \& Rollett for a structure with space group $R \overline{3} m$, compared with $\sigma_{1} . g^{\ddagger}$. Their value 0.018 for (x, y, z) is taken as σ_{1}. It is evident that no significant enhancement is to be expected for positions like (x, o, z), which are not special in the usual sense.

Table 1. $\sigma(\Omega)$ for dimethyltriacetylene			
Position	g	$\sigma_{1} . g^{\ddagger}$	σ_{CR}
$x, 0, z$	1	0.018	0.018
x, \bar{x}, z	2	0.025	0.030
$0,0, z$	6	0.044	0.042
$0,0,0$	12	0.062	0.053

If $\sigma\left(F_{H}\right)$ depends strongly on F_{H}, it follows from (8) that φ will more or less resemble the structure's Patterson function. Then according to (9) the error at atomic positions, too, will be enhanced; but this effect is much smaller than at special positions.

Finally, I wish to thank Dr J. H. Palm for valuable discussions.

References

Cruickshank, D. W. J. \& Rollett, J. S. (1953). Acta Cryst. 6, 705.
Cruickshank, D. W. J. (1949). Acta Cryst. 2, 65.

