Acta Cryst. (1966). 20, 141

A simple rule for the electron-density error at special positions. By P.M. DE WOLFF, Laboratorium voor Technische

Natuurkunde, Technische Hogeschool, Delft, The Netherlands

(Received 2 June 1965)

At special positions, the errors in the electron density can be several times those at general positions. This was shown by Cruickshank & Rollett (1953), whose formula, however, does not readily yield an estimation of the factor by which the r.m.s. error $\sigma(\varrho)$ is increased. We shall show that, to an approximation sufficient for most purposes, this factor is g^{t} , g being the order of the point group of the special position.

Consider the deviation $\Delta \rho$ caused by deviations ΔF (complex in the acentric case) of the structure factors from their true values:

$$V \cdot \Delta \varrho = \sum_{h=-k}^{n} \sum_{j=-k}^{n} \sum_{j=-k}^{n} \Delta F_{hkl} \exp \left\{ 2\pi i (hx + ky + lz) \right\}$$
$$= \sum_{a \parallel H} \Delta F_{H} \exp 2\pi i \mathbf{H} \cdot \mathbf{r} \cdot (1)$$

Now one may write:

$$V \cdot \Delta \varrho = q_1 + \ldots + q_G + q_0 , \qquad (2)$$

 q_j being defined by

$$q_j = \sum_j \Delta F_H \exp 2\pi i \mathbf{H} \cdot \mathbf{r} , \qquad (3)$$

where G is the order of the point group P of the crystal; Σ is a sum over H-vectors only from non-degenerate forms, and from each form only one, whereas Σ is obtained from Σ by transforming H by the *j*th element P_j of P. The sum Σ is over all reflexions in degenerate forms. Thus in orthonombic centric space groups, Σ might contain all reflexions with all-positive indices; whereas Σ contains those with at least one index zero. Now if S_j is a space group operation of which P_j is the

Now if S_j is a space group operation of which P_j is the translation-free component,

$$q_j(\mathbf{r}) = q_1(\mathbf{r}_j), \qquad (4)$$

where $\mathbf{r}_j = S_j^{-1} \mathbf{r}$.

This follows from the phase relation between symmetryrelated F's, which obtains for the ΔF 's as well:

$$\Delta F_{H_j} \exp 2\pi i \mathbf{H}_j \cdot \mathbf{r} = \Delta F_H \exp 2\pi i \mathbf{H} \cdot \mathbf{r}_j ,$$

where $\mathbf{H}_{j} = P_{j} \cdot \mathbf{H}$.

On account of (4), (2) can be rewritten:

$$V \cdot \Delta \varrho(\mathbf{r}) = q_0(\mathbf{r}) + \sum_{j=1}^G q_1(\mathbf{r}_j) .$$
 (5)

Since q_0 is real and independent of the other q's, upon squaring and averaging we obtain:

$$V^{2} \cdot \sigma^{2}\{\varrho(\mathbf{r})\} = \langle q_{0}^{2}(\mathbf{r}) \rangle + \sum_{j=1}^{G} \sum_{k=1}^{G} \langle q_{1}(\mathbf{r}_{j})q_{1}^{*}(\mathbf{r}_{k}) \rangle .$$
(6)

After substitution of (3) the products in the double sum can be written (note that $\langle \Delta F_H \Delta F_{H'}^* \rangle = 0$ for $\mathbf{H} \neq \mathbf{H'}$):

$$\langle q_1(\mathbf{r}_j)q_1^*(\mathbf{r}_k)\rangle = \sum_{l} \sigma^2(F_H) \{\exp 2\pi i \mathbf{H} \cdot (\mathbf{r}_l - \mathbf{r}_k)\}$$

with the definitions

$$\sigma^{2}(F_{H}) = \langle |\Delta F_{H}|^{2} \rangle ;$$

$$\varphi(\mathbf{u}) = \sum_{1} \sigma^{2}(F_{H}) \exp 2\pi i \mathbf{H} \cdot \mathbf{u} .$$
(8)

 $=\varphi(\mathbf{r}_j-\mathbf{r}_k)$, (7)

Hence (6) becomes:

$$V^{2}\sigma^{2}\{\varrho(\mathbf{r})\} = \langle q_{0}^{2}(\mathbf{r}) \rangle + \sum_{j=1}^{C} \sum_{k=1}^{C} \varphi(\mathbf{r}_{j} - \mathbf{r}_{k}) .$$
⁽⁹⁾

Now the real part of φ has a peak at the origin, the extent of which is determined by series termination broadening. Outside this peak, φ will be vanishingly small (see end of paper). Hence in (9), only the terms with $\mathbf{r}_k = \mathbf{r}_j$ need be considered; their number is Gg if the order of the point group of position \mathbf{r} is g.

Denoting the error for this position by σ_g , we find

$$V^{2}\sigma_{g}^{2}(\varrho) = \langle q_{0}^{2} \rangle + Gg \sum_{1} \sigma^{2}(F_{H}) .$$
⁽¹⁰⁾

The first term can be treated by a subdivision of q_0 in mutually dependent sums similar to (2). For a general position (g=1), the result is $\langle q_0^2 \rangle = \sum_{\alpha} \sigma^2(F_H)$ and (10) reduces

to the well-known formula (Cruickshank, 1949)

$$V^2 \sigma_1^2(\varrho) = \sum_{\substack{all \ H}} \sigma^2(F_H)$$
.

For a special position (g > 1), it follows from (10) that $\sigma^2(g) = g\sigma^2(g)$. (11)

$$s_{g}(\varrho) = g \sigma_{1}(\varrho)$$
 (11)

provided $\langle q_0^2 \rangle$ is affected by the special position in the same way as the second term. Special values of $\langle q_0^2 \rangle$ can be calculated by Cruickshank & Rollett's more explicit method. Alternatively, they can be computed by applying the present method to projections. For instance, the contribution of a zone (*hk*0) will be enhanced in a special position A according to the plane point group of A in the c projection; this group may have an order different from g.

However, the number of reflexions involved in q_0 is in general relatively small, so (11) will often be a sufficiently accurate estimate for the enhancement. This is illustrated by Table 1 giving the errors σ_{CR} calculated from unpublished estimates ΔF by Cruickshank & Rollett for a structure with space group $R\overline{3}m$, compared with $\sigma_1 \cdot g^{\pm}$. Their value 0.018 for (x, y, z) is taken as σ_1 . It is evident that no significant enhancement is to be expected for positions like (x, o, z), which are not special in the usual sense.

Table 1. $\sigma(\varrho)$ for dimethyltriacetylene

Position	g	σ_1 . g^{\pm}	$\sigma_{ ext{cr}}$
x, 0, z	1	0.018	0.018
x, \bar{x}, z	2	0.025	0.030
0, 0, z	6	0.044	0.042
0, 0, 0	12	0.062	0.053

If $\sigma(F_H)$ depends strongly on F_H , it follows from (8) that φ will more or less resemble the structure's Patterson function. Then according to (9) the error at atomic positions, too, will be enhanced; but this effect is much smaller than at special positions.

Finally, I wish to thank Dr J. H. Palm for valuable discussions.

References

CRUICKSHANK, D. W. J. & ROLLETT, J. S. (1953). Acta Cryst. 6, 705.

CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.